Structural defects of superconducting core of the single fiber MgB2/Nb,Cu composite
- Autores: Kuznetsova E.I.1, Krinitsina T.P.1, Blinova Y.V.1, Degtyarev M.V.1, Konovalov P.V.2, Dikhtiyevskaya K.K.2, Abdyukhanov I.M.2, Tsapleva A.S.2
-
Afiliações:
- Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
- AO VNIINM
- Edição: Volume 125, Nº 8 (2024)
- Páginas: 1003-1011
- Seção: СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ
- URL: https://modernonco.orscience.ru/0015-3230/article/view/682664
- DOI: https://doi.org/10.31857/S0015323024080107
- EDN: https://elibrary.ru/JWKKDW
- ID: 682664
Citar
Resumo
The microstructure of the MgB2 core of the single fiber composite consisting of MgB2, the Nb barrier, and the Cu shell (MgB2/Nb,Cu), which is synthesized by the powder-in-tube method with an ex situ option and by subsequent annealing, has been studied. It is shown that a dislocation microstructure that exhibits high thermal stability is formed in the MgB2 core during cold deformation, in addition to powder compaction. A high dislocation density is observed inside MgB2 grains. Dislocations form walls with small misorientation angles between subgrains. Annealing at a temperature of 900°C for 1 h leads to a higher density of MgB2 ceramics, and the intergranular contact area increases. Moreover, MgO inclusions with a size of 10 nm or less are formed. Thus, various kinds of structural defects are formed, which can be considered as probable pinning centers for the magnetic flux.
Palavras-chave
Sobre autores
E. Kuznetsova
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Autor responsável pela correspondência
Email: monocrist@imp.uran.ru
Rússia, Ekaterinburg, 620108
T. Krinitsina
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: monocrist@imp.uran.ru
Rússia, Ekaterinburg, 620108
Yu. Blinova
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: monocrist@imp.uran.ru
Rússia, Ekaterinburg, 620108
M. Degtyarev
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: monocrist@imp.uran.ru
Rússia, Ekaterinburg, 620108
P. Konovalov
AO VNIINM
Email: monocrist@imp.uran.ru
Rússia, Moscow, 123098
K. Dikhtiyevskaya
AO VNIINM
Email: monocrist@imp.uran.ru
Rússia, Moscow, 123098
I. Abdyukhanov
AO VNIINM
Email: monocrist@imp.uran.ru
Rússia, Moscow, 123098
A. Tsapleva
AO VNIINM
Email: monocrist@imp.uran.ru
Rússia, Moscow, 123098
Bibliografia
- Криницина Т.П., Кузнецова Е.И., Дегтярев М.В., Блинова Ю.В. Сверхпроводники на основе MgB2: структура и свойства // ФММ. 2021. Т. 122. С. 1271–1295.
- Yamamoto K., Osamura K., Balamurugan S., Nakamura T., Hoshino T., Muta I. Mechanical and superconducting properties of PIT-processed MgB2 wire after heat treatment // Supercond. Sci. Technol. 2003. V. 16. P. 1052–1058.
- Collings E.W., Sumption M.D., Bhatia M., Susner M.A., Bohnenstiehl S.D. Prospects for improving the intrinsic and extrinsic properties of magnesium diboride superconducting strands // Supercond. Sci. Technol. 2008. V. 21. P. 103001.
- Lei Z.Y., Yao C., Guo W.W., Wang D.L., Ma Y.W. Progress on the Fabrication of Superconducting Wires and Tapes via Hot Isostatic Pressing // Materials. 2023. V. 16. P. 1786.
- Gajda D., Morawski A., Zaleski A.J., Häßler W., Nenkov K., Rindfleisch M.A., Żuchowska E., Gajda G., Czujko T., Cetner T., Hossain M.S.A. The critical parameters in in-situ MgB2 wires and tapes with ex-situ MgB2 barrier after hot isostatic pressure, cold drawing, cold rolling and doping // J. Appl. Phys. 2015. V. 117. P. 173908.
- Liao X.Z., Serquis A., Zhu Y.T., Civale L., Hammon D.L., Peterson D.E., Mueller F.M., Nesterenko V.F., Gu Y. Defect structures in MgB2 wires introduced by hot isostatic pressing // Superconductor Sci. Techn. 2003. V. 16. № 7. P. 799–803.
- Gao Z.L., Santra S., Amirkhanlou S., Eardley E., Wort C., Grovenor C.R.M., Speller S.C. Microstructures and superconducting properties of MgB2 bulk samples processed by ultra-high pressure-assisted sintering // J. European Ceramic Soс. 2022. V. 42. № 16. P. 7481–7490.
- Park J.W., Ahn J.H. Superconducting properties of spark plasma sintered MgB2 // Rev. Adv. Mater. Sci. 2011. V. 28. P. 181–184.
- Bohnenstiehl S.D., Susner M.A., Dregia S.A., Sumption M.D., Donovan J., Collin E.W. Experimental determination of the peritectic transition temperature of MgB2 in the Mg–B phase diagram // Thermochim. Acta. 2014. V. 576. P. 27–35.
- МЭК (IEC) 61788-10 – Critical Temperature of Composite Superconductors by a Resistance Method.
- Кузнецова Е.И., Сударева С.В., Криницина Т.П., Блинова Ю.В., Романов Е.П., Акшенцев Ю.Н., Дегтярев М.В., Тихоновский М.А., Кисляк И.Ф. Механизм образования и особенности структуры массивных образцов соединения MgB2 // ФММ. 2014. Т. 115. № 2. С. 186–197.
- Кузнецова Е.И., Акшенцев Ю.Н., Есин В.О., Сударева С.В., Блинова Ю.В., Дегтярев М.В., Новожонов В.И., Романов Е.П. Механизмы образования массивной сверхпроводящей фазы MgB2 при высоких температурах // ФТТ. 2015. Т. 57. № 5. С. 859–865.
- Олейник Г.С. Структурные механизмы пластической деформации керамических материалов // Электронная микроскопия и прочность материалов. Сер.: Физическое материаловедение, структура и свойства материалов. 2014. № 20. С. 3–30.
- Mikheenko P. Dislocations as Origin of High Critical Current Density in Bulk MgB2 // 2019 IEEE 9th International Conference Nanomaterials: Applications & Properties (NAP), Odessa, Ukraine, 2019. P. 1–4.
- Кузнецова Е.И., Криницина Т.П., Блинова Ю.В., Дегтярев М.В. Вторичные фазы в сверхпроводящей керамике // ФММ. 2023. Т. 124. № 7. С. 644–652.
- Kovač P., Melišek T., Kopera L., Hušek I., Polak M., Kulich M. Progress in electrical and mechanical properties of rectangular MgB2 wires // Supercond. Sci. Technol. 2009. V. 22. P. 075026.
- Sobrero C.E., Malachevsky M.T., Serquis A. Core Microstructure and Strain State Analysis in MgB2 Wires with Different Metal Sheaths // Advanc. Cond. Matter Physics. 2015. V. 2015. Article ID 297363. http://dx.doi.org/10.1155/2015/297363.
- Salem N., Ding K., Rödel J., Fang X.F. Thermally enhanced dislocation density improves both hardness and fracture toughnessinsingle-crystal SrTiO3 // J. Am. Ceram. Soc. 2023. V. 106. P. 1344–1355.
- Porz L. 60 years of dislocations in ceramics: A conceptual framework for dislocation mechanics in ceramics // International Journal of Ceramic Engineering & Science. 2002. V. 4. № 4. P. 214–239.
- Криницина Т.П., Кузнецова Е.И., Блинова Ю.В., Раков Д.Н., Белотелова Ю.Н., Сударева С.В., Дегтярев М.В., Романов Е.П. Структура и стабильность сверхпроводящей сердцевины одножильного трубчатого композита MgB2/Nb,Cu с высоким критическим током // ФMM. 2014. Т. 115. № 6. С. 573—582 .
- Li S., White T., Laursen K., Tan T.T., Sun C.Q., Dong Z.L., Li Y., Zho S.H., Horvat J., Dou S.X. Intense vortex pinning enhanced by semicrystalline defect traps in self-aligned nanostructured MgB2 // Appl. Phys. Lett. 2003. V. 83. № 2. P. 314–316.
- Кузнецова Е.И., Криницина Т.П., Блинова Ю.В., Дегтярев М.В., Сударева С.В. Тонкая структура массивного сверхпроводника MgB2 после деформации и термической обработки // ФММ. 2017. Т. 118. № 4. С. 364–371.
- Галахов А.В. Неоднородность упаковки в порошковых компактах и прочность получаемой из них керамики // Огнеупоры и техническая керамика. 1997. № 5. С. 14‒19.
- Marczyk J., Hebda M. Effect of the Particle Size Distribution of Irregular Al Powder on Properties of Parts for Electronics Fabricated by Binder Jetting // Electronics. 2023. V. 12. P. 2733.
Arquivos suplementares
