Structural defects of superconducting core of the single fiber MgB2/Nb,Cu composite

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The microstructure of the MgB2 core of the single fiber composite consisting of MgB2, the Nb barrier, and the Cu shell (MgB2/Nb,Cu), which is synthesized by the powder-in-tube method with an ex situ option and by subsequent annealing, has been studied. It is shown that a dislocation microstructure that exhibits high thermal stability is formed in the MgB2 core during cold deformation, in addition to powder compaction. A high dislocation density is observed inside MgB2 grains. Dislocations form walls with small misorientation angles between subgrains. Annealing at a temperature of 900°C for 1 h leads to a higher density of MgB2 ceramics, and the intergranular contact area increases. Moreover, MgO inclusions with a size of 10 nm or less are formed. Thus, various kinds of structural defects are formed, which can be considered as probable pinning centers for the magnetic flux.

Sobre autores

E. Kuznetsova

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: monocrist@imp.uran.ru
Rússia, Ekaterinburg, 620108

T. Krinitsina

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: monocrist@imp.uran.ru
Rússia, Ekaterinburg, 620108

Yu. Blinova

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: monocrist@imp.uran.ru
Rússia, Ekaterinburg, 620108

M. Degtyarev

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: monocrist@imp.uran.ru
Rússia, Ekaterinburg, 620108

P. Konovalov

AO VNIINM

Email: monocrist@imp.uran.ru
Rússia, Moscow, 123098

K. Dikhtiyevskaya

AO VNIINM

Email: monocrist@imp.uran.ru
Rússia, Moscow, 123098

I. Abdyukhanov

AO VNIINM

Email: monocrist@imp.uran.ru
Rússia, Moscow, 123098

A. Tsapleva

AO VNIINM

Email: monocrist@imp.uran.ru
Rússia, Moscow, 123098

Bibliografia

  1. Криницина Т.П., Кузнецова Е.И., Дегтярев М.В., Блинова Ю.В. Сверхпроводники на основе MgB2: структура и свойства // ФММ. 2021. Т. 122. С. 1271–1295.
  2. Yamamoto K., Osamura K., Balamurugan S., Nakamura T., Hoshino T., Muta I. Mechanical and superconducting properties of PIT-processed MgB2 wire after heat treatment // Supercond. Sci. Technol. 2003. V. 16. P. 1052–1058.
  3. Collings E.W., Sumption M.D., Bhatia M., Susner M.A., Bohnenstiehl S.D. Prospects for improving the intrinsic and extrinsic properties of magnesium diboride superconducting strands // Supercond. Sci. Technol. 2008. V. 21. P. 103001.
  4. Lei Z.Y., Yao C., Guo W.W., Wang D.L., Ma Y.W. Progress on the Fabrication of Superconducting Wires and Tapes via Hot Isostatic Pressing // Materials. 2023. V. 16. P. 1786.
  5. Gajda D., Morawski A., Zaleski A.J., Häßler W., Nenkov K., Rindfleisch M.A., Żuchowska E., Gajda G., Czujko T., Cetner T., Hossain M.S.A. The critical parameters in in-situ MgB2 wires and tapes with ex-situ MgB2 barrier after hot isostatic pressure, cold drawing, cold rolling and doping // J. Appl. Phys. 2015. V. 117. P. 173908.
  6. Liao X.Z., Serquis A., Zhu Y.T., Civale L., Hammon D.L., Peterson D.E., Mueller F.M., Nesterenko V.F., Gu Y. Defect structures in MgB2 wires introduced by hot isostatic pressing // Superconductor Sci. Techn. 2003. V. 16. № 7. P. 799–803.
  7. Gao Z.L., Santra S., Amirkhanlou S., Eardley E., Wort C., Grovenor C.R.M., Speller S.C. Microstructures and superconducting properties of MgB2 bulk samples processed by ultra-high pressure-assisted sintering // J. European Ceramic Soс. 2022. V. 42. № 16. P. 7481–7490.
  8. Park J.W., Ahn J.H. Superconducting properties of spark plasma sintered MgB2 // Rev. Adv. Mater. Sci. 2011. V. 28. P. 181–184.
  9. Bohnenstiehl S.D., Susner M.A., Dregia S.A., Sumption M.D., Donovan J., Collin E.W. Experimental determination of the peritectic transition temperature of MgB2 in the Mg–B phase diagram // Thermochim. Acta. 2014. V. 576. P. 27–35.
  10. МЭК (IEC) 61788-10 – Critical Temperature of Composite Superconductors by a Resistance Method.
  11. Кузнецова Е.И., Сударева С.В., Криницина Т.П., Блинова Ю.В., Романов Е.П., Акшенцев Ю.Н., Дегтярев М.В., Тихоновский М.А., Кисляк И.Ф. Механизм образования и особенности структуры массивных образцов соединения MgB2 // ФММ. 2014. Т. 115. № 2. С. 186–197.
  12. Кузнецова Е.И., Акшенцев Ю.Н., Есин В.О., Сударева С.В., Блинова Ю.В., Дегтярев М.В., Новожонов В.И., Романов Е.П. Механизмы образования массивной сверхпроводящей фазы MgB2 при высоких температурах // ФТТ. 2015. Т. 57. № 5. С. 859–865.
  13. Олейник Г.С. Структурные механизмы пластической деформации керамических материалов // Электронная микроскопия и прочность материалов. Сер.: Физическое материаловедение, структура и свойства материалов. 2014. № 20. С. 3–30.
  14. Mikheenko P. Dislocations as Origin of High Critical Current Density in Bulk MgB2 // 2019 IEEE 9th International Conference Nanomaterials: Applications & Properties (NAP), Odessa, Ukraine, 2019. P. 1–4.
  15. Кузнецова Е.И., Криницина Т.П., Блинова Ю.В., Дегтярев М.В. Вторичные фазы в сверхпроводящей керамике // ФММ. 2023. Т. 124. № 7. С. 644–652.
  16. Kovač P., Melišek T., Kopera L., Hušek I., Polak M., Kulich M. Progress in electrical and mechanical properties of rectangular MgB2 wires // Supercond. Sci. Technol. 2009. V. 22. P. 075026.
  17. Sobrero C.E., Malachevsky M.T., Serquis A. Core Microstructure and Strain State Analysis in MgB2 Wires with Different Metal Sheaths // Advanc. Cond. Matter Physics. 2015. V. 2015. Article ID 297363. http://dx.doi.org/10.1155/2015/297363.
  18. Salem N., Ding K., Rödel J., Fang X.F. Thermally enhanced dislocation density improves both hardness and fracture toughnessinsingle-crystal SrTiO3 // J. Am. Ceram. Soc. 2023. V. 106. P. 1344–1355.
  19. Porz L. 60 years of dislocations in ceramics: A conceptual framework for dislocation mechanics in ceramics // International Journal of Ceramic Engineering & Science. 2002. V. 4. № 4. P. 214–239.
  20. Криницина Т.П., Кузнецова Е.И., Блинова Ю.В., Раков Д.Н., Белотелова Ю.Н., Сударева С.В., Дегтярев М.В., Романов Е.П. Структура и стабильность сверхпроводящей сердцевины одножильного трубчатого композита MgB2/Nb,Cu с высоким критическим током // ФMM. 2014. Т. 115. № 6. С. 573—582 .
  21. Li S., White T., Laursen K., Tan T.T., Sun C.Q., Dong Z.L., Li Y., Zho S.H., Horvat J., Dou S.X. Intense vortex pinning enhanced by semicrystalline defect traps in self-aligned nanostructured MgB2 // Appl. Phys. Lett. 2003. V. 83. № 2. P. 314–316.
  22. Кузнецова Е.И., Криницина Т.П., Блинова Ю.В., Дегтярев М.В., Сударева С.В. Тонкая структура массивного сверхпроводника MgB2 после деформации и термической обработки // ФММ. 2017. Т. 118. № 4. С. 364–371.
  23. Галахов А.В. Неоднородность упаковки в порошковых компактах и прочность получаемой из них керамики // Огнеупоры и техническая керамика. 1997. № 5. С. 14‒19.
  24. Marczyk J., Hebda M. Effect of the Particle Size Distribution of Irregular Al Powder on Properties of Parts for Electronics Fabricated by Binder Jetting // Electronics. 2023. V. 12. P. 2733.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML