Microstructural aspects of additive friction stir welding of chrome-zirconium bronze
- Authors: Lezhnin N.V.1, Volkova E.G.1, Bodyakova A.I.2, Nikitin I.S.2, Mironov S.Y.2, Vopneruk A.A.3, Makarov A.V.1
-
Affiliations:
- Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
- Belgorod National Research University
- ZAO NPP MASHPROM
- Issue: Vol 126, No 5 (2025)
- Pages: 564-574
- Section: СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ
- URL: https://modernonco.orscience.ru/0015-3230/article/view/690794
- DOI: https://doi.org/10.31857/S0015323025050066
- EDN: https://elibrary.ru/vdifqt
- ID: 690794
Cite item
Abstract
About the authors
N. V. Lezhnin
Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: nlezhnin@bk.ru
Ekaterinburg, 620108 Russia
E. G. Volkova
Institute of Metal Physics, Ural Branch, Russian Academy of SciencesEkaterinburg, 620108 Russia
A. I. Bodyakova
Belgorod National Research UniversityBelgorod, 308015 Russia
I. S. Nikitin
Belgorod National Research UniversityBelgorod, 308015 Russia
S. Yu. Mironov
Belgorod National Research UniversityBelgorod, 308015 Russia
A. A. Vopneruk
ZAO NPP MASHPROMEkaterinburg, 620143 Russia
A. V. Makarov
Institute of Metal Physics, Ural Branch, Russian Academy of SciencesEkaterinburg, 620108 Russia
References
- Mishra R.S., Ma Z.Y. Friction stir welding and processing // Mater. Sci. Eng. R. 2005. V. 50. P. 1–78. https://doi.org/10.1016/j.mser.2005.07.001
- Nandan R., DebRoy T., Bhadeshia H.K.D.H. Recent advances in friction-stir welding — Process, weldment structure and properties // Progr. Mater. Sci. 2008. V. 53. P. 980–1023. https://doi.org/10.1016/j.pmatsci.2008.05.001
- Threadgill P.L., Leonard A.J., Shercliff H.R., and Withers P.J. Friction stir welding of aluminium alloys // Int. Mater. Rev. 2009. V. 54. P. 49–93. https://doi.org/10.1179/174328009X411136
- Heidarzadeh A., Mironov S., Kaibyshev R., Cam G., Simar A., Gerlich A., Khodabakhshi F., Mostafaei A., Field D.P., Robson J.D., Deschamps A., Withers P.J. Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution // Progr. Mater. Sci. 2021. V. 117. P. 100752. https://doi.org/10.1016/j.pmatsci.2020.100752
- Макаров А.В., Лежнин Н.В., Котельников А.Б., Вопнерук А.А., Коробов Ю.С., Валиуллин А.И., Волкова Е.Г. Восстановление стенок кристаллизаторов машин непрерывного литья заготовок из хромциркониевой бронзы методом многопроходной сварки трением с перемешиванием // Изв. ВУЗов. Цветная металлургия. 2023. Т. 29. № 6. С. 66–83. https://doi.org/10.17073/0021-3438-2023-6-66-83
- Лежнин Н.В., Макаров А.В., Валиуллин А.И., Котельников А.Б., Вопнерук А.А. Применение аддитивной технологии на основе сварки трением с перемешиванием для восстановления исходной геометрии изношенных плит кристаллизаторов МНЛЗ // Тяжелое машиностроение. 2023. № 11–12. С. 26–33.
- Bodyakova A., Malopfeev S., Tkachev M., Chistyukhina E., Mironov S., Lezhnin N., Fu Y., Makarov A., Kaibyshev R. Effect of friction-stir processing and subsequent aging treatment on microstructure and service properties of Cu-Cr-Zr alloy // Mater. Characterization. 2024. V. 216. P. 114225. https://doi.org/10.1016/j.matchar.2024.114225
- Liu F.C., Feng A.H., Pei X., Hovanski Y., Mishra R.S., Ma Z.Y. Friction stir based welding, processing, extrusion and additive manufacturing // Progr. Mater. Sci. 2024. V. 146. P. 101330. https://doi.org/10.1016/j.pmatsci.2024.101330.
- Lai R., He D., He G., Lin J., Sun Y. Study of the microstructure evolution and property response of a friction-stir-welded copper-chromium-zirconium alloy // Metals. 2017. V. 7. P. 381. https://doi.org/10.3390/met7090381
- Wang Y.D., Liu M., Yu B.H., Wu L.H., Xue P., Ni D.R., Ma Z.Y. Enhanced combination of mechanical properties and electrical conductivity of a hard state Cu-Cr-Zr alloy via one-step friction stir processing // J. Mater. Proc. Technol. 2021. V. 288. P. 116880. https://doi.org/10.1016/j.jmatprotec.2020.116880.
- Wang Y.D., Liu F.C., Xue P., Zhang H., Wu L.H., Ni D.R., Xiao B.L., Ma Z.Y. Thermal stability behaviors of ultrafine-grained Cu-Cr-Zr alloy processed by friction stir processing and rolling methods // J. All. Compd. 2023. V. 950. P. 169957. https://doi.org/10.1016/j.jallcom.2023.169957
- Wang Y.D., Zhu S.Z., Xie G.M., Wu L.H., Hue P., Ni D.R., Xia B.L., Ma Z.Y. Realizing equal-strength welding with good conductivity in Cu-Cr-Zr alloy via friction stir welding // Sci. Technol. Weld. Join. 2021. V. 26. P. 448–454. https://doi.org/10.1080/13621718.2021.1935151
- Wang Y.D., Xue P., Liu F.C., Wu L.H., Zhang H., Zhang Z., Ni D.R., Xiao B.L., Ma Z.Y. Influence of processing innovations on joint strength improvements in friction stir welded high strength copper alloys // Mater. Sci. Eng. A. 2023. V. 872. P. 144983. https://doi.org/10.1016/j.msea.2023.144983
- Li Y., Zhang J., Fu R., Wang J., Lv H., Xing H. Synergistic improvement of strength and electrical conductivity in Cu–Cr–Zr alloys through prestrain-assisted friction stir processing // J. Mater. Res. Technol. 2023. V. 27. P. 564–573. https://doi.org/10.1016/j.jmrt.2023.09.262.
- Васильев П.А., Христофоров О.В., Данилов П.Г., Калинин А.Г., Осанов В.Н., Васильев И.П., Григорьев В.С. Машина фрикционной сварки “Малахит” // Заготовительные производства в машиностроении. 2021. Т. 19. № 12. С. 537–544.
- Humphreys F.J. Quantitative metallography by electron backscatter diffraction // J. Micros. 1999. V. 195. P. 170–185. https://doi.org/10.1046/j.1365-2818.1999.00578.x
- Wilkinson A.J. A new method for determining small misorientations from electron back scatter diffraction patterns // Scripta Mater. 2001. V. 44. P. 2379–2385. https://doi.org/10.1016/S1359-6462(01)00943-5
- Humphreys F.J., Hatherly M. Recrystallization andrelated annealing phenomena. Elsevier. 2004. 605 p.
- Mahajan S., Pande C., Imam M., Rath B. Formation of annealing twins in f.c.c. crystals // Acta Mater. 1997. V. 45. P. 2633–2638. https://doi.org/10.1016/S1359-6454(96)00336-9
- Левит В.И., Смирнова Н.А., Давыдова Л.С. Двойникование и измельчение зерна при динамической рекристаллизации никелевого сплава // ФММ. 1989. Т. 8. № 2. С. 334–341.
- Mironov S., Inagaki K., Sato Y.S., Kokawa H. Microstructural evolution of pure copper during friction stir welding // Phil. Mag. 2015. V. 94. № 4. P. 367–381. https://doi.org/10.1080/14786435.2015.1006293
- Нестерова Е.В., Рыбин В.В. Механическое двойникование и фрагментация технически чистого титана при больших пластических деформациях // ФММ. 1985. Т. 59. С. 395–406.
- Fonda R.W., Knipling K.E. Texture development in friction stir welds // Sci. Technol. Weld. Join. 2011. V. 16. P. 288–294. https://doi.org/10.1179/1362171811Y.0000000010
- Mishin V., Shishov I., Kalinenko A., Vysotskii I., Zuiko I., Malopheyev S., Mironov S., Kaibyshev R. Numerical simulation of the thermo-mechanical behavior of 6061 aluminum alloy during friction-stir welding // J. Manuf. Mater. Proc. 2022. V. 6. № 4. P. 68. https://doi.org/10.3390/jmmp6040068
- Savoie J., Zhou Y., Jonas J.J., Macewen S.R. Textures induced by tension and deep drawing in aluminum sheets // Acta Mater. 1996. V. 44. P. 587–605. https://doi.org/10.1016/1359-6454(95)00214-6
- Charit I., Mishra R.S. Abnormal grain growth in friction stir processed alloys // Scripta Mater. 2008. V. 58. P. 367–371. https://doi.org/10.1016/j.scriptamat.2007.09.052
- Humphreys F.J. A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures—II. The effect of second-phase particles // Acta Mater. 1997. V. 45. P. 5031–5039. https://doi.org/10.1016/S1359-6454(97)00173-0
- Kalinenko A., Mishin V., Shishov I., Malopheyev S., Zuiko I., Novikov V., Mironov S., Kaibyshev R., Semiatin S.L., Mechanisms of abnormal grain growth in friction-stir-welded aluminum alloy 6061-T6 // Mater. Character. 2022. V. 194. 112473. https://doi.org/10.1016/j.matchar.2022.112473
Supplementary files
