Медь в почве агроэкосистем виноградников: современный взгляд на проблему
- Авторы: Андреева И.В.1, Габечая В.В.1
-
Учреждения:
- Российский государственный аграрный университет – МСХА им. К.А. Тимирязева
- Выпуск: № 11 (2024)
- Страницы: 56-80
- Раздел: Обзоры
- URL: https://modernonco.orscience.ru/0002-1881/article/view/647252
- DOI: https://doi.org/10.31857/S0002188124110084
- EDN: https://elibrary.ru/ahltqg
- ID: 647252
Цитировать
Аннотация
Проблема меди в почвах виноградников и других типах плантационно-садовых агроэкосистем не нова, однако, громко заявив о себе в научных исследованиях второй половины XX века, она так и осталась нерешенной. За последние десятилетия острота данной проблемы не только не исчезла, но и приобрела новые черты. С одной стороны, в России и мире произошли существенные изменения в социально-экономической сфере, появились современные научно-технологические подходы, которые изменили структуру винодельческой отрасли, сформировали новые тенденции к спросу и предложению, способствовали внедрению альтернативных типов землепользования, модернизированных агротехнологий выращивания винограда и его переработки. С другой стороны, усугубились старые и появились новые экологические вызовы, такие как глобальные изменения климата, оказывающие существенное влияние на устойчивость производства качественной продукции виноградарства и виноделия, для смягчения последствий которых требуются комплексные адаптационные подходы и инновационные агротехнологические решения. В настоящем обзоре обсудили результаты исследований за последние 25 лет, главным образом зарубежных авторов, позволяющие взглянуть на проблему меди в почве виноградников, исходя из современных представлений о путях и масштабах ее накопления, физико-химических превращениях и миграции в почве ампелоценозов. Приведены наиболее актуальные и обсуждаемые в научной литературе вопросы относительно влияния отдельных природных и агрогенных факторов на величину аккумуляции меди в почвах ампелоценозов. Рассмотрены уже реализованные и потенциальные пути смягчения негативных последствий загрязнения почв медью, направленные на ограничение и оптимизацию применения медьсодержащих препаратов, внедрение в виноградарстве почвосберегающих агротехнологий, рекультивацию загрязненных медью почв, а также замену фунгицидов на основе меди альтернативными препаратами для реализации устойчивых стратегий защиты растений, безопасных для окружающей среды.
Ключевые слова
Полный текст

Об авторах
И. В. Андреева
Российский государственный аграрный университет – МСХА им. К.А. Тимирязева
Автор, ответственный за переписку.
Email: i.andreeva@rgau-msha.ru
ORCID iD: 0000-0002-6686-881X
Scopus Author ID: 57203401601
ResearcherId: AAE-1094-2022
Россия, 127434 Москва, Тимирязевская ул., 49
В. В. Габечая
Российский государственный аграрный университет – МСХА им. К.А. Тимирязева
Email: i.andreeva@rgau-msha.ru
Россия, 127434 Москва, Тимирязевская ул., 49
Список литературы
- Günter J., Kundig K.J. Copper: its trade, manufacture, use, and environmental status. ASM International, 1999. 451 p.
- Попов С.Я., Дорожкина Л.А., Калинин В.А. Основы химической защиты растений / Под ред. Попова С.Я. М.: Арт-Лион, 2003. 208 с.
- Lamichhane J.R., Osdaghi E., Behlau F., Köhl J., Jones J., Aubertot J.-N. Thirteen decades of antimicrobial copper compounds applied in agriculture. A review // Agron. Sustain. Develop. 2018. V. 38. doi: 10.1007/s13593-018-0503-9
- Schoffer J., Sauvé S., Neaman A., Ginocchio R. Role of leaf litter on the incorporation of copper-containing pesticides into soils under fruit production: a Review // J. Soil Sci. Plant Nutr. 2020. V. 20. doi: 10.1007/s42729-020-00186-1
- Komárek M., Čadková E., Chrastný V., Bordas F., Bollinger J.-C. Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects // Environ. Inter. 2010. V. 36. Iss. 1. P. 138–151. doi: 10.1016/j.envint.2009.10.005
- Merrington G., Rogers S.L., Van Zwieten L. The potential impact of long-term copper fungicide usage on soil microbial biomass and microbial activity in an avocado orchard // Austral. J. Soil Res. 2002. V. 40(5). P. 749–759. doi: 10.1071/SR01084
- Besnard E., Chenu C., Robert M. Influence of organic amendments on copper distribution among particle-size and density fractions in Champagne vineyard soils // Environ. Pollut. 2001. V. 112(3). P. 329–337. doi: 10.1016/s0269-7491(00)00151-2
- Pijl A., Wang W., Straffelini E. Soil and water conservation in terraced and non‐terraced cultivations – a massive comparison of 50 vineyards // Land Degrad. Develop. 2021. V. 33. P. 596–610. doi: 10.1002/ldr.4170
- Mackie K.A., Müller T., Kandeler E. Remediation of copper in vineyards – a mini review // Environ. Pollut. 2012. V. 167. P. 16–26. doi: 10.1016/j.envpol.2012.03.023
- Wightwick A., Mollah M., Smith J., MacGregor A. Sampling considerations for surveying copper concentrations in Australian vineyard soils // Austral. J. Soil Res. 2006. V. 44. P. 711–717.
- Adriano D.C. Trace elements in the terrestrial environments: biogeochemistry, bioavailability, and risks of metals. N.Y.–Berlin–Heidelberg–Tokyo: Springer-Verlag, 2001. 867 p.
- Brunetto G., Ferreira P., Melo G., Ceretta C., Toselli M. Heavy metals in vineyards and orchard soils // Revista Brasileira de Fruticultura. 2017. V. 39. № 2. Р. 263. doi: 10.1590/0100-29452017-263
- Pavlovic M. A review of agribusiness copper use effects on environment // Bulgar. J. Agricult. Sci. 2011. V. 17. № 4. P. 491–500.
- Kabata-Pendias A. Trace elements in soils and plants. 4th ed. Boca Raton, FL, USA: CRC Press/Taylor & Francis Group, 2010. 548 p. ISBN: 9781420093681
- Brunetto G., Bastos de Melo G.W., Terzano R., Del Buono D., Astolfi S., Tomasi N., Pii Y., Mimmo T., Cesco S. Copper accumulation in vineyard soils: Rhizosphere processes and agronomic practices to limit its toxicity // Chemosphere. 2016. V. 162. P. 293–307. doi: 10.1016/j.chemosphere.2016.07.104
- Korchagin J., Moterle D.F., Escosteguy P.A.V., Bortoluzzi E.C. Distribution of copper and zinc fractions in a Regosol profle under centenary vineyard // Environ. Earth Sci. 2020. V. 79. P. 439. doi: 10.1007/s12665-020-09209-7
- Lorenzoni P., Valboa G., Papini R., Paone R., Aramini G., Colloca C., Corea A.M. Soil copper and zinc accumulation and bioavailability under a long term vineyard cultivation in South Italy // Ital. J. Agron. 2007. V. 2. № 1. P. 31. doi: 10.4081/IJA.2007.31
- Ballabio C., Panagos P., Lugato E., Huang J., Orgiazzi A., Jones A., Fernandez-Ugalde O., Borrelli P., Montanarella L. Copper distribution in European topsoils: An assessment based on LUCAS soil survey // Sci. Total Environ. 2018. V. 636. P. 282–298.
- Kovačič G.R., Lesnik M., Vršič S. An overview of the copper situation and usage in viticulture // Bulgar. J. Agricult. Sci. 2013. V. 19. P. 50–59.
- Vázquez-Blanco R., González-Feijoo R., Campillo-Cora C., Fernández-Calviño D., Arenas-Lago D. Risk assessment and limiting soil factors for vine production. Cu and Zn Contents in vineyard soils in Galicia (Rías Baixas D.O.) // Agronomy. 2023. V. 13. P. 309. doi: 10.3390/agronomy13020309
- Flores-Veles L.M., Ducaroir J., Jaunet A.M., Robert M. Study of the distribution of copper in an acid sandy vineyard soil by three different methods // Europ. J. Soil Sci. 1996. V. 47. P. 523–532.
- Nogueirol R.C., Alleoni L.R., Nachtigall G.R., de Melo G.W. Sequential extraction and availability of copper in Cu fungicide-amended vineyard soils from Southern Brazil // J Hazard Mater. 2010. V. 181(1–3). P. 931–937. doi: 10.1016/j.jhazmat.2010.05.102
- Resolution No. 420, 28/12/2009, providing for criteria and guiding values of soil quality regarding the presence of chemical substances and establishing guidelines for the environmental management of areas contaminated by these substances as a result of anthropic activities. URL: https://faolex.fao.org/docs/pdf/bra196968.pdf (режим доступа: 25.05.2023).
- Mirlean N., Roisenberg A., Chies J.O. Metal contamination of vineyard soils in wet subtropics (southern Brazil) // Environ. Pollut. 2007. V. 149. P. 10–17. doi: 10.1016/j.envpol.2006.12.024
- Bortoluzzi E.C., Korchagin J., Moterle D.F., Santos D.R., Caner L. Accumulation and precipitation of Cu and Zn in a centenarian vineyard // Soil Sci. Soc. Amer. J. 2019. V. 83. P. 492–502. doi: 10.2136/sssaj2018.09.0328
- Волкова А.А. Экологизированное производство винограда на Кубани в условиях применения медьсодержащих препаратов // Краснодар: Сев.-Кавказ. зонал. НИИ сад-ва и виноград-ва, 2009. 120 с.
- Андреева И.В., Габечая В.В., Волков Я.А., Кузьмин А.В., Морев Д.В. Выявление и анализ лимитирующих агроэкологических факторов урожайности и качества винограда в условиях Крыма // Цифровые технологии агроэкологического мониторинга и оптимизация земледелия / Под ред. Васенева И.И. М.: РГАУ–МСХА им. К.А. Тимирязева, 2022. 240 с.
- СанПиН 1.2.3685-21 “Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания” (с изменениями на 30 декабря 2022 г.)
- Красильников А.А., Руссо Д.Э., Хорошкин А.Б. Интенсификация минерального питания виноградников (методические рекомендации). Краснодар: Северо-Кавказский федеральный научный центр садоводства, виноградарства, виноделия, 2019. 64 с.
- Кобечинская В.Г., Вышкин В.Б., Ульчицкая В.Н. Оценка качества почв под виноградниками с учетом применения удобрений и химических средств защиты в степном Крыму // Уч. зап. Крым. фед. ун-та им. В.И. Вернадского. Биол. Химия. 2020. Т. 6(72). № 2. С. 85–98.
- Fernandez-Calvino D., Soler-Rovira P., Polo A., Díaz-Ravina M., Arias-Estevez M., Plaza C. Enzyme activities in vineyard soils long-term treated with copper-based fungicides // Soil Biol. Biochem. 2010. V. 42. P. 2119–2127. doi: 10.1016/j.soilbio.2010.08.007
- NEPC – National Environment Protection Council (1999) National Environment Protection (Assessment of Site Contamination) Measure. URL: https://faolex.fao.org/docs/pdf/aus197207.pdf (дата обращения: 25.05.2023).
- Decree on limit values, alert thresholds and critical levels of dangerous substances in soil, 1996. Official Gazette of the Republic of Slovenia. No. 68/1996 . URL: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC197254 (дата обращения: 16.01.2024).
- Samdandorj M., Farsang A., Barta K., Tobak Z., Juhász S., Balling P., Babcsányi I. The Impact of soil erosion on the spatial distribution of soil characteristics and potentially toxic element contents in a sloping vineyard in Tállya, Ne Hungary // J. Environ. Geogr. 2021. V. 14. № 1–2. P. 47–57. doi: 10.2478/jengeo-2021-0005
- Joint Decree No. 6/2009. (IV. 14) KvVM-EüM-FVM of the Ministers of environmental protection and water management, public health, agriculture and regional development on the limit values necessary to protect the quality of geological medium and the groundwater and on measurement of pollution.
- Uredba o graničnim vrednostima zagađujućih, štetnih i opasnih materija u zemljištu “Sl. glasnik RS”, br. 30/2018 i 64/2019. URL: https://www.paragraf.rs/propisi/uredba-granicnim-vrednostima-zagadjujucih-stetnih-opasnih-materija-zemljistu.html (дата обращения: 12.08.2024).
- Parat C., Chaussod R., Lévéque J., Dousset S., Andreux F. The relationship between copper accumulated in vineyard calcareous soils and soil organic matter and iron // Eur. J. Soil Sci. 2002. V. 53. P. 663–669. doi: 10.1046/j.1365-2389.2002.00478.x
- Bradl H.B. Adsorption of heavy metal ions on soils and soils constituents // J. Colloid Interface Sci. 2004. V. 277. P. 1–18.
- Fernández-Calviño D., Pérez-Novo C., Nóvoa-Muñoz J.C., Arias-Estévez M. Copper fractionation and release from soils devoted to different crops // J. Hazard Mater. 2009. V. 167. P. 797–802.
- Li L., Wu H., van Gestel C.A.M., Peijnenburg W.J.G.M., Allen H.E. Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China // Environ. Pollut. 2014. V. 188. P. 144–152.
- Trentin E., Cesco S., Pii Y., Valentinuzzi F., Celletti S., Feil S., Yorlady Alzate, Zuluaga M., Ademar Avelar, Ferreira P., Ricachenevsky F.K., Stefanello L.O., De Conti L., Brunetto G., Mimmo T. Plant species and pH dependent responses to copper toxicity // Environ. Exp. Bot. 2022. V. 196. P. 104791–104791. doi: 10.1016/j.envexpbot.2022.104791
- Pham N., Babcsanyi I., Balling P., Farsang A. Accumulation patterns and health risk assessment of potentially toxic elements in the topsoil of two sloping vineyards (Tokaj-Hegyalja, Hungary) // J. Soil Sediments. 2022. V. 19. doi: 10.1007/s11368-022-03252-6
- Nóvoa-Muñoz J.C., Queijeiro J.M., Blanco-Ward D., Alvarez-Olleros C., Martínez-Cortizas A., García-Rodeja E. Total copper content and its distribution in acid vineyards soils developed from granitic rocks // Sci. Total. Environ. 2007. V. 378(1–2). P. 23–27. doi: 10.1016/j.scitotenv.2007.01.027
- Brun L., Maillet J., Richarte J., Herrmann P.A., Remy J. Relationships between extractable copper, soil properties and copper uptake by wild plants in vineyard soils // Environ. Pollut. 1998. V. 102. P. 151–161.
- Arias M., Paradelo M,. López E., Simal-Gándara J. Influence of pH and soil copper on adsorption of metalaxyl and penconazole by the surface layer of vineyard soils // J. Agric. Food Chem. 2006. V. 54. P. 8155–8162.
- Karlsson T., Persson P., Skyllberg U. Complexation of copper (II) in organic soils and in dissolved organic matter — EXAFS evidence for chelate ring structures // Environ. Sci. Technol. 2006. V. 40. P. 2623–2628.
- Fernández-Calviño D., Pateiro-Moure M., López-Periago E., Arias-Estévez M., Nóvoa-Muñoz J.C. Copper distribution and acid-base mobilization in vineyard soils and sediments from Galicia (NW Spain) // Eur. J. Soil Sci. 2008. V. 59. P. 315–326.
- Fernández-Calviño D., Nóvoa-Muñoz J.C., Díaz-Raviña M., Arias-Estévez M. Copper accumulation and fractionation in vineyard soils from temperate humid zone (NW Iberian Peninsula) // Geoderma. 2009. V. 153. P. 119–129. doi: 10.1016/j.geoderma.2009.07.024
- Amery F., Degryse А., Van Moorleghem С., Duyck М., Smolders Е. The dissociation kinetics of Cu-dissolved organic matter complexes from soil and soil amendments // Anal. Chim. Acta. 2010. V. 670(1–2). P. 24–32. doi: 10.1016/j.aca.2010.04.047
- Ruyters S., Salaets P., Oorts K., Smolders E. Copper toxicity in soils under established vineyards in Europe: a survey // Sci. Total Environ. 2013. V. 443. P. 470–477.
- Herrero-Hernández E., Andrades M.S., Rodríguez-Cruz M.S., Arienzo M., Sánchez-Martín M.J. Long-term variability of metals from fungicides applied in amended young vineyard fields of La Rioja (Spain) // Environ. Monit. Assess. 2012. V. 184. № 5. P. 3359–3371. doi: 10.1007/s10661-011-2194-4
- Duplay J., Semhi K., Errais E., Imfeld G., Babcsanyi I., Perrone T. Copper, zinc, lead and cadmium bioavailability and retention in vineyard soils (Rouffach, France): The impact of cultural practices // Geoderma. 2014. V. 230–231. P. 318–328. doi: 10.1016/j.geoderma.2014.04.022
- Fernández-Calviño D., Nóvoa-Muñoz J.C., López-Periago E., Arias-Estévez M. Changes in copper content and distribution in young, old and abandoned vineyard acid soils due to land use changes // Land Degrad. Develop. 2008. V. 19. P. 165–177. doi: 10.1002/ldr.831
- Steinmetz Z., Kenngott K., Azeroual M., Schäfer R., Schaumann G. Fractionation of copper and uranium in organic and conventional vineyard soils and adjacent stream sediments studied by sequential extraction // J. Soil Sediment. 2017. V. 17. P. 1092–1100. doi: 10.1007/s11368-016-1623-y
- Khanlari Z.V., Jalali M. Concentrations and chemical speciation of five heavy metals (Zn, Cd, Ni, Cu, and Pb) in selected agricultural calcareous soils of Hamadan Province, western Iran // Arch. Agron. Soil Sci. 2008. V. 54. P. 19–32. doi: 10.1080/03650340701697317
- Herrero-Hernandez E., Andrades M.S., Rodríguez-Cruz M.S., Sanchez-Martín M.J. Effect of spent mushroom substrate applied to vineyard soil on the behavior of copper-based fungicide residues // J. Environ. Manag. 2011. V. 92. P. 1849–1857. doi: 10.1016/j.jenvman.2011.03.011
- Boudesocque S., Guillon E., Aplincourt M., Marceau E., Stievano L. Sorption of Cu(II) onto vineyard soils: macroscopic and spectroscopic investigations // J. Colloid. Interface Sci. 2007. V. 307. P. 40–49.
- Sipos P., Németh T., Kis V.K., Mohai I. Sorption of copper, zinc and lead on soil mineral phases // Chemosphere. 2008. V. 7. P. 461–469.
- Strawn D.G., Baker L.L. Speciation of Cu in a contaminated agricultural soil measured by XAFS, μ-XAFS, and μ-XRF // Environ. Sci. Technol. 2008. V. 42. P. 37–42.
- Sayen S., Mallet J., Guillon E. Aging effect on the copper sorption on a vineyard soil: column studies and SEM-EDS analysis // J. Colloid. Interface Sci. 2009. V. 331. P. 47–54.
- Strawn D.G., Baker L.L. Molecular characterization of copper in soils using X-ray absorption spectroscopy // Environ. Pollut. 2009. V. 157. P. 2813–2821. doi: 10.1016/j.envpol.2009.04.018
- Chaignon V., Sanchez-Neira I., Herrmann P., Jaillard B., Hinsinger P. Copper bioavailability and extractability as related to chemical properties of contamined soils from a vine-growing area // Environ. Pollut. (Barking, Essex.: 1987). 2003. V. 123. P. 229–238. doi: 10.1016/S0269-7491(02)00374-3
- Martínez-Villegas N., Martínez C.E. Solid- and solution-phase organics dictate copper distribution and speciation in multicomponent systems containing ferrihydrite, organic matter, and montmorillonite // Environ. Sci. Technol. 2008. V. 42. P. 2833–2838.
- Fernández-Calviño D., Rodríguez-Suárez J.A., López-Periago E., Arias-Estévez M., Simal-Gándara J. Copper content of soils and river sediments in a winegrowing area, and its distribution among soil or sediment components // Geoderma. 2008. V. 145. P. 91–97.
- Deluisa A., Giandon P., Aichner M., Bortolami P., Bruna L., Lupetti A., Nardelli F., Stringari G. Copper pollution in Italian vineyard soils // Commun. Soil Sci. and Plant Anal. 1996. V. 27. P. 1537–1548. doi: 10.1080/00103629609369651
- Vavoulidou E., Avramides E.J., Papadopoulos P., Dimirkou A., Charoulis A., Konstantinidou‐Doltsinis S. Copper content in agricultural soils related to cropping systems in different regions of Greece // Commun. Soil Sci. Plant Anal. 2005. V. 36. № 4–6. P. 759–773. doi: 10.1081/CSS-200043367
- Morgan R.K., Taylor E. Copper accumulation in vineyard soils in New Zealand // Environ. Sci. 2004. V. 1. № 2. P. 139–167. doi: 10.1080/15693430512331342602
- Hung Yu L., Kai-Wei J., Bo-Ching C. Copper concentrations in grapevines and vineyard soils in central Taiwan // Soil Sci. Plant Nutr. 2010. V. 56. P. 601–606. doi: 10.1111/j.1747-0765.2010.00494.x
- Pietrzak U., McPhail D.C. Copper accumulation, distribution and fractionation in vineyard soils of Victoria, Australia // Geoderma. 2004. V. 122. P. 151–161.
- Bregaglio S., Donatelli M., Confalonieri R. Fungal infections of rice, wheat, and grape in Europe in 2030–2050 // Agron. Sustain. Develop. 2013. V. 33. P. 767–776.
- Babić V., Krstić M. Climate characteristics of the sessile oak forest belt on Fruška Gora // Шумарство. 2014. V. 3–4. P. 49–62 (in Serb.).
- Андреева И.В., Габечая В.В., Морев Д.В. Экологическая оценка накопления и миграции меди в почве возрастных ампелоценозов в результате длительного применения медьсодержащих фунгицидов в регионе Фрушка Гора Республики Сербия // АгроЭкоИнфо: Электр. научн.-произв. журн. 2023. № 5. URL: http://agroecoinfo.ru/STATYI/2023/5/st_547.pdf. doi: 10.51419/202135547
- Kopittke P.M., Blamey F.P.C., Menzies N.W. Toxicities of soluble Al, Cu, and La include ruptures to rhizodermal and root cortical cells of cowpea // Plant Soil. 2008. V. 303. P. 217–227.
- Tiecher T.L., Tiecher T., Cereta C.A., Ferreira P.A.A., Nicoloso F.T., Soriani H.H., De Conti L., Kulmann M.S.S., Schneider R.O. Brunetto G. Tolerance and translocation of heavy metals in young grapevine (Vitis vinifera) grown in sandy acidic soil with interaction of high doses of copper and zinc // Sci. Horticult. 2017. V. 222. P. 203–212. doi: 10.1016/j.scienta.2017.05.026
- Андреева И.В., Габечая В.В., Морев Д.В., Таллер Е.Б. Эколого-геохимическая оценка накопления тяжелых металлов в почве разновозрастных ампелоценозов в условиях склонового ландшафта горной гряды Фрушка гора Республики Сербия // Тимирязев. биол. журн. 2023. № 1(3). С. 3–28. doi: 10.26897/2949-4710-2023-3-13-28
- Hummes A.P., Bortoluzzi E.C., Tonini V., da Silva L.P., Petry C. Transfer of copper and zinc from soil to grapevine-derived products in young and centenarian vineyards // Water Air Soil Pollut. 2019. V. 230. P. 150. doi: 10.1007/s11270-019-4198-6
- Brunetto G., Miottoa A., Ceretta C.A., Schmitt D.E., Heinzena J., de Moraes M.P., Cantonc L., Tiechera T.L., Cominc J.J., Girotto E. Mobility of copper and zinc fractions in fungicide–amended vineyard sandy soils // Arch. Agron. Soil Sci. 2014. V. 60(5). P. 609–624. doi: 10.1080/03650340.2013.826348
- Husson O. Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems. A transdisciplinary overview pointing to integrative opportunities for agronomy // Plant Soil. 2013. V. 362. P. 389–417. doi: 10.1007/s11104-012-1429-7
- Majzlan J., Zittlau A.H., Grevel K.-D., Schliesser J., Woodfield B.F., Dachs E., Števko M., Chovan M., Plášil J., Sejkora J., Milovská S. Thermodynamic properties and phase equilibria of the secondary copper minerals libethenite, olivenite, pseudomalachite, kröhnkite, cyanochroite, and devilline // Can. Mineral. 2015. V. 53. P. 937–960. doi: 10.3749/canmin.1400066
- Wightwick A.M., Reichman S.M., Menzies N.W., Allinson G. Industry wide risk assessment: a case study of Cu in Australian vineyard soils // Water Air Soil Pollut. 2013. V. 224. P. 1–8. doi: 10.1007/s11270-013-1702-2
- Michaud A., Bravin M., Galleguillos M., Hinsinger P. Copper uptake and phytotoxicity as assessed in situ for durum wheat (Triticum turgidum durum L.) cultivated in Cu-contaminated, former vineyard soils // Plant and Soil. 2007. V. 298. P. 99–111.
- Wightwick A.M., Mollah M.R., Partington D.L., Allinson G. Copper fungicide residues in Australian vineyard soils // J. Agricult. Food Chem. 2008. V. 56. P. 2457–2464. doi: 10.1021/jf0727950
- Gabechaya V., Andreeva I., Morev D., Yaroslavtsev A.M., Neaman A., Vasenev I.I. Exploring the influence of diverse viticultural systems on soil health metrics in the northern Black Sea region // Soil Systems. 2023. V. 7. № 3. P. 73. doi: 10.3390/soilsystems7030073
- Quagliata G., Celletti S., Coppa E., Mimmo T., Cesco S., Astolfi S. Potential use of copper-contaminated soils for hemp (Cannabis sativa L.) cultivation // Environments. 2021. V. 8. P. 1–14. doi: 10.3390/environments8110111
- Mazzoncini M., Sapkota T., Bàrberi P., Antichi D., Risaliti R. Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content // Soil Till. Res. 2011. V. 114. P. 165–174. doi: 10.1016/j.still.2011.05.001
- Coulouma G., Boizard H., Gwenn T., Lagacherie P., Richard G. Effect of deep tillage for vineyard establishment on soil structure: A case study in Southern France // Soil Till. Res. 2006. V. 88. P. 132–143. doi: 10.1016/j.still.2005.05.002
- Sánchez-Moreno S., Minoshima H., Ferris H., Jackson L.E. Linking soil properties and nematode community composition: Effects of soil management on soil food webs // Nematology. 2006. V. 8. P. 703–715. https://doi.org/10.1163/156854106778877857
- Van Zwieten L., Rust J., Kingston T., Merrington G., Morris S. Influence of copper fungicide residues on occurrence of earthworms in avocado orchard soils // Sci. Total. Environ. 2004. V. 329. P. 29–41. doi: 10.1016/j.scitotenv.2004.02.014
- Pose Juan E., Rial-Otero R., Paradelo M., López-Periago J. Influence of soil characteristics on copper sorption from a copper oxychloride fungicide // J. Agricult. Food Chem. 2009. V. 57. P. 2843–2848. doi: 10.1021/jf803275k
- Wang Q.Y., Sun J.Y., Xu X.J., Yu H.W. Distribution and availability of fungicide-derived copper in soil aggregates // J. Soil Sediment. 2020. V. 20. P. 816–823. doi: 10.1007/s11368-019-02441-0
- Komárek M., Vaněk A., Chrastný V., Száková J., Kubová K., Drahota P., Balík J. Retention of copper originating from different fungicides in contrasting soil types // J. Hazard. Mater. 2009. V. 166(2–3). P. 1395–1402. doi: 10.1016/j.jhazmat.2008.12.061
- Sharma P., Singh A., Kahlon C.S., Brar A.S., Grover K.K., Dia M., Steiner R.L. The role of cover crops towards sustainable soil health and agriculture – a review paper // Am. J. Plant Sci. 2018. V. 9. P. 1935–1951. doi: 10.4236/ajps.2018.99140
- Finney D.M., Buyer J.S., Kaye J.P. Living cover crops have immediate impacts on soil microbial community structure and function // J. Soil Water Conserv. 2017. V. 724. P. 361–373.
- Chapagain T., Lee E.A., Raizada M.N. The Potential of multi-species mixtures to diversify cover crop benefits // Sustainability (Switzerland). 2020. V. 12. № 5. P. 2058. doi: 10.3390/su12052058
- Delpuech X., Metay A. Adapting cover crop soil coverage to soil depth to limit competition for water in a Mediterranean vineyard // Eur. J. Agron. 2018. V. 97. doi: 10.1016/j.eja.2018.04.013
- Linares R., de la Fuente M., Junquera P., Lissarrague J.R., Baeza P. Effects of soil management in vineyard on soil physical and chemical characteristics // BIO Web Conf. 2014. V. 3. P. 01008.
- Laudicina V.A., Palazzolo E., Catania P., Vallone M., García A.D., Badalucco L. Soil quality indicators as affected by shallow tillage in a vineyard grown in a semiarid mediterranean environment // Land Degrad. Dev. 2017. V. 28. P. 1038–1046.
- Estrany J., Garcia C., Batalla R.J. Suspended sediment transport in a small Mediterranean agricultural catchment // Earth Surf. Proc. Landform. 2009. V. 34. P. 929–940. doi: 10.1002/esp.1777
- Imfeld G., Guyot B., Wiegert C., Payraudeau S. Soil management drives copper and zinc export in runoff from vineyard plots // Water Air Soil Pollut. 2023. V. 234. P. 357. doi: 10.1007/s11270-023-06352-2
- Biddoccu M., Ferraris S., Opsi F., Cavallo E. Long-term monitoring of soil management effects on runoff and soil erosion in sloping vineyards in Alto Monferrato (North-West Italy) // Soil Till. Res. 2016. V. 155. P. 176–189. doi: 10.1016/j.still.2015.07.005
- Ortega P., Sánchez E., Gil E., Matamoros V. Use of cover crops in vineyards to prevent groundwater pollution by copper and organic fungicides. Soil column studies // Chemosphere. 2022. V. 303. Part 1. P. 134975. doi: 10.1016/j.chemosphere.2022.134975
- Eon P., Robert T., Goutouly J.-P., Aurelle V., Cornu J.-Y. Cover crop response to increased concentrations of copper in vineyard soils: Implications for copper phytoextraction // Chemosphere. 2023. V. 329. P. 138604. doi: 10.1016/j.chemosphere.2023.138604
- Yamamoto K., Hashimoto Y., Kang J., Kobayashi K. Speciation of phosphorus zinc and copper in soil and water-dispersible colloid affected by a long-term application of swine manure compost // Environ. Sci. Technol. 2018. V. 52(22). P. 13270–13278. doi: 10.1021/acs.est.8b02823
- Soustre-Gacougnolle I., Lollier M., Schmitt C., Perrin M., Buvens E., Lallemand J.-F., Mermet M., Henaux M., Thibault Carpentier C., Dembelé D. Responses to climatic and pathogen threats differ in biodynamic and conventional vines // Sci. Rep. 2018. V. 8. P. 1–14.
- Sumby K.M., Caliani N.S., Jiranek V. Yeast diversity in the vineyard: how it is defined, measured and influenced by fungicides // Austral. J. Grape Wine Res. 2021. V. 27(2). P. 169–193. doi: 10.1111/ajgw.12479
- Castellini A., Mauracher C., Troiano S. An overview of the biodynamic wine sector // Inter. J. Wine Res. 2017. V. 9. P. 1–11. doi: 10.2147/IJWR.S69126
- Milićević T., Aničić U.M., Relic D., Vuković G., Nikolić D., Vergel K., Popovic A. Environmental pollution influence to soil–plant–air system in organic vineyard: bioavailability, environmental, and health risk assessment // Environ. Sci. Pollut. Res. Inter. 2021. V. 28. doi: 10.1007/s11356-020-10649-8
- Jez E., Pellegrini E., Contin M. Copper bioavailability and leaching in conventional and organic viticulture under environmental stress // Appl. Sci. 2023. V. 13. P. 2595. doi: 10.3390/app13042595
- Colautti A., Civilini M., Contin M., Celotti E., Iacumin L. Organic vs. conventional: impact of cultivation treatments on the soil microbiota in the vineyard // Front. Microbiol. 2023. V. 14. doi: 10.3389/fmicb.2023.1242267
- Габечая В.В., Смирнова Е.С., Андреева И.В. Содержание меди в почве ампелоценозов Крыма в условиях органической и традиционной систем землепользования // Аграрная наука – 2022: Мат-лы Всерос. конф. молод. исслед. М.: РГАУ–МСХА им. К.А. Тимирязева, 2022. С. 659–663.
- Beni C., Rossi G. Conventional and organic farming: estimation of some effects on soil, copper accumulation and wine in Central Italy vineyard // Agrochimica -Pisa. 2009. V. 53. P. 145–159.
- Hendgen M., Döring J., Stöhrer V., Schulze F., Lehnart R., Kauer R. Spatial differentiation of physical and chemical soil parameters under integrated, organic, and biodynamic viticulture // Plants. 2020. V. 9. P. 1361. doi: 10.3390/plants9101361
- Tamm L., Thuerig B., Apostolov S., Blogg H., Borgo E., Corneo P., Fittje S., Palma M., Donko A., Experton C., Marín É., Pérez Á., Pertot I., Rasmussen A., Steinshamn H., Vetemaa A., Willer H., Herforth R.J. Use of copper-based fungicides in organic agriculture in twelve European countries // Agronomy. 2022. V. 12. P. 673. doi: 10.3390/agronomy12030673
- Ninkov J., Vasin J., Milić S., Sekulic P., Zeremski T., Milenkovic S. Copper content and distribution in vineyard soils of central Serbia // Euras. J. Soil Sci. 2014. V. 3. P. 131–137. doi: 10.18393/ejss.81212
- Prosdocimi M., Cerdà A., Tarolli P. Soil water erosion on Mediterranean vineyards: A review // CATENA. 2016. V. 141. P. 1–21. doi: 10.1016/j.catena.2016.02.010
- Ha Nhung P.T., Viet N.Q. Assessing the impact of erosion and farming practices on the spatial distribution of topsoil characteristics in a sloping vineyard using an open-source QGIS software // VNU J. Sci.: Earth Environ. Sci. 2023. V. 39. № 4. P. 91–101. doi: 10.25073/2588-1094/vnuees.5016
- Cela-Dablanca R., Barreiro A., Ferreira-Coelho G., Campillo-Cora C., Pérez-Rodríguez P., Arias-Estévez M., Núñez-Delgado A., Álvarez-Rodríguez E., Fernández-Sanjurjo M.J. Cu and As(V) adsorption and desorption on/from different soils and bio-adsorbents // Materials. 2022. V. 15. № 14. P. 5023. doi: 10.3390/ma15145023
- Morais G., Comin J., Lourenzi C., Tiecher T., Soares C., Gatiboni L., Loss A., Couto R., Ferreira G., Severgnini M., Trapp T., Brunetto G. Copper and zinc transfer limits to soil solution of mixtures containing different clay and organic matter contents // PREPRINT (Vers. 1) available at Research Square. 2023. doi: 10.21203/rs.3.rs-2553496/v1
- Bolan N., Kunhikrishnan A., Thangarajan R., Kumpiene J., Park J., Makino T., Kirkham M.B., Scheckelet K. Remediation of heavy metal(loid)s contaminated soils – to mobilize or to immobilize? // J. Hazard. Mater. 2014. V. 266. P. 141–166. doi: 10.1016/j.jhazmat.2013.12.018
- Tonello M., Moterle D., Tiecher T., Merten G., Petry C., Bortoluzzi E. Copper transfer from vineyard watershed: mineralogy and copper forms // J. Sediment. Environ. 2023. V. 8. P. 1–14. doi: 10.1007/s43217-023-00134-w
- Pompermaier A., Varela A.C.C., Fortuna M., Mendonça-Soares S., Koakoski G., Aguirre R., Oliveira T.A., Sordi E., Moterle D.F., Pohl A.R., Rech V.C., Bortoluzzi E.C., Barcellos L.J.G. Water and suspended sediment runoff from vineyard watersheds affecting the behavior and physiology of zebra fish // Sci. Total Environ. 2021. V. 757. P. 143794. doi: 10.1016/j.scitotenv.2020.143794
- Campana O., Spadaro D.A., Blasco J., Simpson S.L. Sublethal effects of copper to benthic invertebrates explained by changes in sediment properties and dietary exposure // Environ. Sci. Technol. 2012. V. 46. P. 6835–6843.
- Vanacker V., Ameijeiras-Mariño Y., Schoonejans J., Cornélis J.T., Minella J.P.G., Lamouline F., Vermeire M.L., Campforts B., Robinet J., Van De Broek M., Delmelle P., Opfergelt S. Land use impacts on soil erosion and rejuvenation in Southern Brazil // CATENA. 2019. V. 178. P. 256–266. doi: 10.1016/j.catena.2019.03.024
- Xu C., Yang Z., Qian W., Chen S., Liu X., Lin W., Xiong D., Jiang M., Chang C.-T., Huang J.-C., Yang Y. Runoff and soil erosion responses to rainfall and vegetation cover under various afforestation management in subtropical montane forest // Land Degrad. Develop. 2019. V. 30(14). P. 1711–1724. doi: 10.1002/ldr.3377
- Epstein L., Bassein S. Pesticide applications of copper on perennial crops in California, 1993 to 1998 // J. Environ. Qual. 2001. V. 30(5). P. 1844–1847.
- Tamm L., Pertot I., Gubler W.D. Organic grape disease management / Eds. Finckh M.R., van Bruggen A.H.C., Tamm L. Plant Dis. their Manag. Org. Agric. APS Press, 2015. P. 335–350.
- Behlau F., Scandelai L.H.M., da Silva Junior G.J., Lanza F.E. Soluble and insoluble copper formulations and metallic copper rate for control of citrus canker on sweet orange trees // Crop Prot. 2017. V. 94. P. 185–191. doi: 10.1016/j.cropro.2017.01.003
- La Torre A., Mandalà C., Caradonia F., Battaglia V. Natural alternatives to copper and low-rate copper formulations to control grape downy mildew in organic farming // Hellenic Plant Protect. J. 2012. V. 5. P. 13–21.
- Pergher G., Petris R. Pesticide dose adjustment in vineyard spraying and potential for dose reduction // Agricult. Engin. Inter.: the CIGR Ejournal. Manuscript ALNARP 08 011. 2008. V. 10. P. 1–9.
- Sanchez-Hermosilla J., Paez F., Rincon V.J., Perez-Alonso J. Volume application rate adapted to the canopy size in greenhouse tomato crops // Sci Agric. 2013. V. 70. P. 390–396. doi: 10.1590/S0103-90162013000600003
- Da Silva Scapin M., Behlau F., Scandelai L.H.M., Fernandes R.S., Silva Junior G.J., Ramos H.H. Tree-row-volume-based sprays of copper bactericide for control of citrus canker // Crop Prot. 2015. V. 77. P. 119–126. doi: 10.1016/j.cropro.2015.07.007
- Walklate P.J., Cross J.V., Richardson G.M., Baker D.E. Optimising the adjustment of label-recommended dose rate for orchard spraying // Crop Prot. 2006. V. 25. P. 1080–1086. doi: 10.1016/j.cropro.2006.02.011
- Solanelles F., Escolà A., Planas S., Rosell J.R., Camp F., Gràcia F. An electronic control system for pesticide application proportional to the canopy width of tree crops // Biosyst. Eng. 2006. V. 95. P. 473–481. doi: 10.1016/j.biosystemseng.2006.08.004
- Kennelly M.M., Cazorla F.M., De Vicente A., Ramos C., Sundin G.W. Pseudomonas syringae diseases of fruit trees: progress toward understanding and control // Plant Dis. 2007. V. 91. P. 4–17. doi: 10.1094/PD-91-0004
- Uddin M., Khan T., Ahmed F., Babar J., Ejaz M., Adnan F., Fareed R., Kakar H. Optimizing fungicide sprays to tackle powdery mildew (Uncinula necator) at the right time for healthy grapes production // Bio Sight. 2023. V. 4. P. 28–40. doi: 10.46568/bios.v4i4.154
- Lee Y.A., Schroth M.N., Hendson M. Lindow S.E., Wang X.-L., Olson B., Buchner R.P., Teviotdale B. Increased toxicity of iron-amended copper-containing bactericides to the walnut blight pathogen Xanthomonas campestris pv. juglandis // Phytopathology. 1993. V. 83. P. 1460–1465. doi: 10.1094/Phyto-83-1460
- Marco G.M., Stall R.E. Control of bacterial spot of pepper initiated by strains of Xanthomonas campestris pv. vesicatoria that differ in sensitivity to copper // Plant Dis. 1983. V. 67. P. 779–781.
- Worthington R.J., Rogers S.A., Huigens R.W.I., Melander C., Ritchie D.F. Foliar-applied small molecule that suppresses biofilm formation and enhances control of copper-resistant Xanthomonas euvesicatoria on pepper // Plant Dis. 2012. V. 96. P. 1638–1644. doi: 10.1094/PDIS-02-12-0190-RE
- Roberts P.D., Momol M.T., Ritchie L., Olson S.M., Jones J.B., Balogh B. Evaluation of spray programs containing famoxadone plus cymoxanil, acibenzolar-S-methyl, and Bacillus subtilis compared to copper sprays for management of bacterial spot on tomato // Crop Prot. 2008. V. 27. P. 1519–1526. doi: 10.1016/j.cropro.2008.06.007
- Fayette J., Roberts P.D., Pernezny K.L., Jones J.B. The role of cymoxanil and famoxadone in the management of bacterial spot on tomato and pepper and bacterial leaf spot on lettuce // Crop Prot. 2012. V. 31. P. 107–112. doi: 10.1016/j.cropro.2011.09.006
- Madden A.A., Epps M.J., Fukami T., Irwin R.E., Sheppard J., Sorger D.M., Dunn R.R. The ecology of insect-yeast relationships and its relevance to human industry // Proceed. Royal So. B: Biol. Sci . 2018. V. 285. P. 20172733.
- Liu D., Zhang P., Chen D., Howell K. From the vineyard to the winery: how microbial ecology drives regional distinctiveness of wine // Front. Microbiol. 2019. V. 10. P. 2679.
- Retallack M. Vineyard biodiversity and insect interactions - establishing and monitoring insectariums // Australia: Crafers, SA, 2011. 75 p.
- Sholberg P., Harlton C., Boulé J., Haag P. Fungicide and clay treatments for control of powdery mildew influence wine grape microflora // Hort Sci. 2006. V. 41. P. 176–182.
- James E.E., Mulholland D.A., Langat M.K., Kleeberg I., Treutwein J., Hokkanen H.M.T., Thürig B., Schärer H.J., Tamm L. Development of a botanical plant protection product from Larix by-products // Planta Med. 2016. V. 82 (S 01). P. S1–S381. doi: 10.1055/s-0036-1596140
- Dagostin S., Schärer H.-J., Pertot I., Tamm L. Are there alternatives to copper for controlling grapevine downy mildew in organic viticulture? // Crop Prot. 2011. V. 30. Iss. 7. P. 776–788. doi: 10.1016/j.cropro.2011.02.031
- Roda R., Prats-Llinàs M.T., Forcadell S., Mazzieri M., Calvo-Garrido C., Nadal M., Lamo S., Ferrer-Gallego R. The effect of copper reduction on the control of downy mildew in Mediterranean grapevines // Eur. J. Plant Pathol. 2024. V. 169(3). doi: 10.1007/s10658-024-02845-w
- Bleve G., Grieco F., Cozzi G., Logrieco A., Visconti A. Isolation of epiphytic yeasts with potential for biocontrol of Aspergillus carbonarius and A. niger on grape // Inter. J. Food Microbiol. 2006. V. 108. P. 204–209.
- Gobbi A., Kyrkou I., Filippi E., Ellegaard-Jensen L., Hansen L.H. Seasonal epiphytic microbial dynamics on grapevine leaves under biocontrol and copper fungicide treatments // Sci. Rep. 2020. V. 10. P. 681.
- Schena L., Nigro F., Pentimone I., Ligorio A., Ippolito A. Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium pullulans // Postharvest Biol. Technol. 2003. V. 30. P. 209–220.
- Dimakopoulou M., Tjamos S., Antoniou P., Pietri A., Battilani P., Avramidis N., Markakis E., Tjamos E. Phyllosphere grapevine yeast Aureobasidium pullulans reduces Aspergillus carbonarius (sour rot) incidence in wine-producing vineyards in Greece // Biol. Control. 2008. V. 46. P. 158–165.
- Borel B. When the pesticides run out // Nature. 2017. V. 543. P. 302–304.
- Lupwayi N.Z., Brandt S.A., Harker K.N., O’Dono-van J.T., Clayton G.W., Turkington T.K. Contrasting soil microbial responses to fertilizers and herbicides in a canola–barley rotation // Soil Biol. Biochem. 2010. V. 42. P. 1997–2004.
- Ambrosini A., de Souza R., Passaglia L.M.P. Ecological role of bacterial inoculants and their potential impact on soil microbial diversity // Plant and Soil. 2016. V. 400. P. 193–207.
- Belda I., Zarraonaindia I., Perisin M., Palacios A., Acedo A. From vineyard soil to wine fermentation: microbiome approximations to explain the “terroir” concept // Front. Microbiol. 2017. V. 8. P. 821. doi: 10.3389/fmicb.2017.00821
- Schütz L., Gattinger A., Meier M., Müller A., Boller T., Mäder P., Mathimaran N. Improving crop yield and nutrient use efficiency via biofertilization – a global meta-analysis // Front. Plant Sci. 2018. V. 8. P. 2204.
- Jayaseelan C., Rahuman A.A., Kirthi A.V., Marimuthu S., Santhoshkumar T., Bagavan A., Gaurav K., Karthik L., Bhaskara Rao K.V. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi // Spectrochim. Acta A Mol. Biomol. Spectrosci. 2012. V. 90. P. 78–84. doi: 10.1016/j.saa.2012.01.006
- Khot L.R., Sankaran S., Maja J.M., Ehsani R., Schuster E.W. Applications of nanomaterials in agricultural production and crop protection: a review // Crop Prot. 2012. V. 35. P. 64–70. doi: 10.1016/j.cropro.2012.01.007
- Krishnaraj C., Ramachandran R., Mohan K., Kalaichelvan P.T. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi // Spectrochim. Acta A Mol. Biomol. Spectrosci. 2012. V. 93. P. 95–99. doi: 10.1016/j.saa.2012.03.002
- Ocsoy I., Paret M.L., Ocsoy M.A., Kunwar S., Chen T., You M., Tan W. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans // ACS Nano. 2013. V. 7. P. 8972–8980. doi: 10.1021/nn4034794
- Young M., Ozcan A., Myers M.E., Johnson E.G., Graham J.H., Santra S. Multimodal generally recognized as safe ZnO/nanocopper composite: a novel antimicrobial material for the management of citrus phytopathogens // J. Agric. Food Chem. 2017. doi: 10.1021/acs.jafc.7b02526
- Strayer-Scherer A., Liao Y.Y., Young M., Ritchie L., Vallad G.E., Santra S., Freeman J.H., Clark D., Jones J.B., Paret M.L. Advanced copper composites against copper-tolerant Xanthomonas perforans and tomato bacterial spot // Phytopathology. 2018. V. 108. P. 196–205. doi: 10.1094/PHYTO-06-17-0221-R
- Bae E., Park H.-J., Lee J., Kim Y., Yoon J., Park K., Choi K., Yi J. Bacterial cytotoxicity of the silver nanoparticle related to physicochemical metrics and agglomeration properties // Environ. Toxicol. Chem. 2010. V. 29. P. 2154–2160. https://doi.org/10.1002/etc.278
- Emerich D.F., Thanos C.G. The pinpoint promise of nanoparticlebased drug delivery and molecular diagnosis // Biomol. Eng. 2006. V. 23. P. 171–184. https://doi.org/10.1016/j.bioeng.2006.05.026
- Panacek A., Kvıtek L., Prucek R., Kolar M., Vecerova R., Pizúrova N., Sharma V.K., Nevecna T., Zboril R. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity // J. Phys. Chem. B. 2006. V. 110. P. 16248–16253. https://doi.org/10.1021/jp063826h
- Jiang W., Mashayekhi H., Xing B. Bacterial toxicity comparison between nano- and micro-scaled oxide particles // Environ. Pollut. 2009. V. 157. P. 1619–1625. https://doi.org/10.1016/j.envpol.2008.12.025
- Worrall E.A., Hamid A., Mody K.T., Mitter N., Pappu H.R. Nanotechnology for plant disease management // Agronomy. 2018. V. 8. P. 285.
- Kumar S., Kumar D., Dilbaghi N. Preparation, characterization, and bio-efficacy evaluation of controlled release carbendazim-loaded polymeric nanoparticles // Environ. Sci. Pollut. Res. 2017. V. 24. P. 926–937.
- Zhao P., Cao L., Ma D., Zhou Z., Huang Q., Pan C. Synthesis of pyrimethanil-loaded mesoporous silica nanoparticles and its distribution and dissipation in cucumber plants // Molecules. 2017. V. 22. P. 817.
- Machado T.O., Beckers S.J., Fischer J., Müller B., Sayer C., de Araújo P.H.H., Landfester K., Wurm F.R. Bio-based lignin nanocarriers loaded with fungicides as a versatile platform for drug delivery in plants // Biomacromolecules. 2020. V. 21. P. 2755–2763. doi: 10.1021/acs.biomac.0c00487
- Pedneault K., Provost C. Fungus resistant grape varieties as a suitable alternative for organic wine production: Benefits, limits, and challenges // Sci. Hortic. 2016. V. 208. P. 57–77. doi: 10.1016/j.scienta.2016.03.016
- Fragoulis G., Trevisan M., Di Guardo A., Sorce A., Van Der Meer M., Capri E. Development of a management tool to indicate the environmental impact of organic viticulture // J. Environ. Qual. 2009. V. 38. P. 826–835. doi: 10.2134/jeq2008.0182
- Sivcev B.V., Sivcev I.L., Rankovic-Vasic Z.Z. Natural process and use of natural matters in organic viticulture // J. Agric. Sci. 2010. V. 55. P. 195–215.
- Fuller K.B., Alston J.M., Sambucci O.S. The value of powdery mildew resistance in grapes: evidence from California // Wine Econ. Pol. 2014. V. 3. P. 90–107.doi: 10.1016/j.wep.2014.09.001
- Pacifico D., Gaiotti F., Giusti M., Tomasi D. Performance of interspecific grapevine varieties in north – east Italy // Agricult. Sci. 2013. V. 4. P. 91–101.
- Basler P., Pfenninger H. Disease-resistant cultivars as a solution for organic viticulture // ISHS Acta Horticulturae. 2003. V. 603. P. 681–685.
- Vezzulli S., Vecchione A., Stefanini M., Zulini L. Downy mildew resistance evaluation in 28 grapevine hybrids promising for breeding programs in Trentino region (Italy) // Eur. J. Plant Pathol. 2018. doi: 10.1007/s10658-017-1298-2
- Gabel B. New concept of vine grape protection–knowledge-based approach & high tech // BIO Web of Conferences. 2019. V. 15. 01020.
- Кабашникова Л.Ф. Прайминг защитных реакций в растениях при патогенезе: приобретенный иммунитет // Журн. БелГУ. Экология. 2020. № 4. С. 19–29. doi: 10.46646/2521-683X/2020-4-19-29
Дополнительные файлы
